Computational characterization of the substrate-binding mode in coproporphyrinogen III oxidase.

نویسندگان

  • Pedro J Silva
  • Maria João Ramos
چکیده

Oxygen-dependent coproporphyrinogen III oxidase catalyzes the sequential decarboxylation of the propionate substituents present on the A and B rings of coproporphyrinogen III in the heme biosynthetic pathway. Although extensive experimental investigation of this enzyme has already afforded many insights into its reaction mechanism, several key features (such as the substrate binding mode, the characterization of the active site, and the initial substrate protonation state) remain poorly described. The molecular dynamics simulations described in this paper enabled the determination of a very promising substrate binding mode and the extensive characterization of the enzyme active site. The proposed binding mode is fully consistent with the known selectivity of the active site toward substituted tetrapyrroles and explains the lack of activity of the H131A, R135A, D274A, and R275A mutants and the reasons behind the nonoccurrence of catalysis on the C and D rings of the tetrapyrrole. An important role in this binding mode is fulfilled by G276, as its carbonyl oxygen intervenes in the substrate anchoring by hydrogen bonding its ring D pyrrole NH group. The presence of this interaction (which is only possible with the protonated NH pyrrole group) and the absence of positively charged side chains close to the pyrrole nitrogen (which might stabilize the N-deprotonated pyrrole postulated in some mechanistic proposals) show that the pyrrole ring is very unlikely to undergo deprotonation during the catalytic cycle and allow the discrimination between the previously postulated mechanistic proposals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A radiochemical method for the measurement of coproporphyrinogen oxidase and the utilization of substrates other than coproporphyrinogen III by the enzyme from rat liver.

[14C2]Coproporphyrin III, 14C-labelled in the carboxyl carbon atoms of the 2- and 4-propionate substituents, was prepared by stepwise modification of the vinyl groups of protoporphyrin IX. The corresponding porphyrinogen was used as substrate in a specific sensitive assay for coproporphyrinogen oxidase (EC 1.3.3.3) in which the rate of production of 14CO2 is measured. With this method, the Km o...

متن کامل

Kinetic evaluation of human cloned coproporphyrinogen oxidase using a ring isomer of the natural substrate.

BACKGROUND The enzyme coproporphyrinogen oxidase (copro'gen oxidase) converts coproporphyrinogen-III (GIII) to protoporphyrinogen-IX via an intermediary monovinyl porphyrinogen. The A ring isomer coproporphyrinogen-IV (C-IV) has previously been shown to be a substrate for copro'gen oxidase derived from avian erythrocytes. In contrast to the authentic substrate (C-III) where only a small amount ...

متن کامل

Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant.

Coproporphyrinogen III oxidase, an enzyme involved in heme biosynthesis, catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Genetic and biochemical studies suggested the presence of two different coproporphyrinogen III oxidases, one for aerobic and one for anaerobic conditions. Here we report the cloning of the hemF gene, encoding the aerobic coprop...

متن کامل

Harderoporphyria : A Variant Hereditary Coproporphyria

a high level of coproporphyrin in their urine and feces; the pattern of fecal porphyrin excretion was atypical for hereditary coproporphyria because the major porphyrin was harderoporphyrin (>60%; normal value is <20%). The lymphocyte coproporphyrinogen III oxidase activity of each patient was 10% of control values, which suggests a homozygous state. Both parents showed only mild abnormalities ...

متن کامل

Transcriptional control of Bacillus subtilis hemN and hemZ.

Previous characterization of Bacillus subtilis hemN, encoding a protein involved in oxygen-independent coproporphyrinogen III decarboxylation, indicated the presence of a second hemN-like gene (B. Hippler, G. Homuth, T. Hoffmann, C. Hungerer, W. Schumann, and D. Jahn, J. Bacteriol. 179:7181-7185, 1997). The corresponding hemZ gene was found to be split into the two potential open reading frames...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 115 8  شماره 

صفحات  -

تاریخ انتشار 2011